Açısal Yer Değiştirme Formülleri ve Çözülmüş Alıştırmalar
açısal yer değiştirme Bir nesne, daire şeklindeki bir yolu veya yolu izleyerek hareket ettiğinde üretilir. Yer değiştirmeden farklıdır; açısal yer değiştirme seyahat edilen açıyı ölçerken, yer değiştirme mesafeyi ölçer.
Bir çevre boyunca hareket eden bir nesnenin açısal yer değiştirmesini hesaplamak için iki yol kullanılabilir: ilk ve son açı biliniyorsa, o zaman açısal yer değiştirme son açı ile ilk açı arasındaki çıkarma olacaktır..
Yer değiştirmenin uzunluğu (seyahat edilen çevresel yayın uzunluğu) ve çevrenin yarıçapı biliniyorsa, açısal yer değiştirme θ = l / r ile verilir..
indeks
- 1 Formüller
- 2 Egzersizler
- 2.1 İlk egzersiz
- 2.2 İkinci alıştırma
- 2.3 Üçüncü alıştırma
- 3 Kaynakça
formüller
Yukarıda açıklanan formülleri elde etmek için aşağıdaki görüntüleri görebilirsiniz:
İlki, açısal yer değiştirmenin neden son açının çıkarılmasının eksi başlangıç açısının eşit olduğuna eşit olduğunu gösterir..
İkinci görüntüde, bir dairenin yayının uzunluğunun formülüdür. Bu nedenle, earing 'yi temizleyerek başlangıçta açıklanan formülü elde edersiniz..
eğitim
Aşağıda açısal yer değiştirme tanımının uygulanması ve yukarıda açıklanan formüllerin kullanıldığı bazı alıştırmalar verilmiştir..
İlk egzersiz
Juan, yarıçapı 7 metreye eşit olan dairesel bir koşu parkuru üzerinde 35 metrelik bir mesafe kullandı. Juan'ın yaptığı açısal yer değiştirmeyi hesapla.
çözüm
Yayın kat ettiği mesafe ve çevrenin yarıçapı bilindiğinden, ikinci formül Juan tarafından yapılan açısal yer değiştirmeyi bilmek için uygulanabilir. Yukarıda açıklanan formülü kullanarak, θ = 35/7 = 5 radyan değerine sahipsiniz..
İkinci alıştırma
Eğer Mario bir dairesel yarış pistinin yarısında aracında seyahat etmişse, Mario'nun yaptığı açısal yer değiştirme nedir??
çözüm
Bu alıştırmada, ilk formül uygulanacaktır. Mario'nun pistin yarısını geçtiği biliniyor olduğu için, yarışa 0 ° açıyla başladığı ve dairenin ortasına ulaştığı zaman 180 ° 'ye çıktığı kabul edilebilir. Bu nedenle, cevap 180 ° -0 ° = 180 ° = π radyan.
Üçüncü egzersiz
María'nın dairesel bir havuzu var. Köpeğiniz havuz etrafında 18 metre mesafeden koşuyor. Havuzun yarıçapı 3 metre ise, Maria'nın maskotunun yaptığı açısal yer değiştirme nedir??
çözüm
Havuz dairesel olduğundan ve yarıçapını bildiğiniz için ikinci formülü kullanmaya devam edebilirsiniz..
Yarıçapın 3 metreye eşit olduğu ve evcil hayvanın kat ettiği mesafenin 18 metreye eşit olduğu bilinmektedir. Bu nedenle, yapılan açısal yer değiştirme θ = 18/3 = 6 radyan'a eşittir.
referanslar
- Basto, J. R. (2014). Matematik 3: Temel analitik geometri. Patria Editör Grubu.
- Billstein, R., Libeskind, S., ve Lott, J.W. (2013). Matematik: temel eğitim öğretmenleri için problem çözme yaklaşımı. López Mateos Editörleri.
- Bult, B. ve Hobbs, D. (2001). Matematik sözlüğü (resimli ed.). (F. P. Cadena, Trad.) Basımlar AKAL.
- Callejo, I., Aguilera, M., Martinez, L. ve Aldea, C. (1986). Matematik. Geometri. E.G.B'nin üst döngüsünün reformu. Milli Eğitim Bakanlığı.
- Schneider, W. ve Sappert, D. (1990). Pratik teknik resim kılavuzu: endüstriyel teknik resim temellerine giriş. Reverte.
- Thomas, G.B., ve Weir, M.D. (2006). Hesaplama: birkaç değişken. Pearson Eğitimi.